Model 9103CC1 Hold Down & Release Mechanism

EBAD is the global leader of non-pyrotechnic Hold Down & Release Mechanism (HDRM) for the space and defense markets. EBAD's industry-leading NEA® and TiNi™ mechanisms are offered in a range of sizes and custom mounting configurations.

The NEA® Model 9103CC1 is based on the Model 9103, integrating a cup/cone shear load interface, a bolt extractor, a bolt catcher, and source shock reduction elements to form a HDRM that's ideal for multi-point satellite release. In a 4-point release configuration, the 9103CC1 is designed to dispense up to 100 kN payloads separating laterally from a central dispensing structure. The 9103CC1 is delivered fully preloaded, so integration into space platforms is greatly simplified. The 9103CC1 is easily scaled up and down in load capacity by using a different NEA® HDRM model.

Principle of Operation

The NEA® Model 9103CC1 is an electrically initiated, one-shot mechanism that carries very high mechanical loads until commanded to release. The preload is applied through a release bolt that tightly restrains a cup/cone shear load interface. The bolt is held in place by two separable spool halves which are in turn held together by tight winding of restraining wire. The restraint wire is held in place by redundant electrical fuse wires; actuation of either circuit allows release, assuring maximum reliability. When sufficient electrical current is applied, the restraint wire unwinds allowing the spool halves to separate releasing the release bolt and allowing the two halves of the cup/cone interface to separate.

EBAD has developed a companion HDRM Firing Unit (HFU) that multiplexes a single Launch Vehicle firing order to activate (6) Model 9103CC1’s in diagonal pairs or simultaneously. The HFU assures proper current application to the HDRM to assure tight actuation simultaneously between the HDRMs. The HFU provides safety interlocks to Arming and Firing and provides status of HFU and HDRM for integration operations and launch readiness assurance.

Applications

Typical applications include retention and release of:
- Antennas, reflectors, solar arrays, and deployable radomes
- Booms, industry-leading NEA® and TiNi™ mechanisms
- Satellite and spacecraft deployment
- Launch vehicle and missile stage and fairing separation
- Missile payload separation

Key Features

- Non-explosive hold-down & release function
- High restrained preload
- Extremely low release shock
- High similarity of multiple hold-down points
- Wide operating temperature range
- Can be operated with pyrotechnic initiation circuitry
- Space-rated materials
- Factory refurbishments
- More than 20 years of flight heritage
- Flight pedigree on more than 750 space platforms

Model 9103CC1 Technical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preload (as Delivered)</td>
<td>37.8 to 38.2 kN (8,500 to 8,600 lbf)</td>
</tr>
<tr>
<td>Shear Load</td>
<td>55.4 kN (12,450 lbf)</td>
</tr>
<tr>
<td>Export Shock (Satellite Interface)</td>
<td>20G @ 2kHz, 180G @ 9kHz</td>
</tr>
<tr>
<td>Export Shock (Dispenser Interface)</td>
<td>30G @ 2kHz, 390G @ 9kHz</td>
</tr>
<tr>
<td>Fuse Wire Resistance</td>
<td>1.2 Ω to 2.0 Ω @ 25°C</td>
</tr>
<tr>
<td>Activation Current</td>
<td>4 Amps for 25ms</td>
</tr>
<tr>
<td>No-Fire Current</td>
<td>250 mAmps at 10-5 Torr @ 110°C</td>
</tr>
<tr>
<td>Release Time @ Activation Current</td>
<td><15 msec @ 7 Amps for 10 mSec</td>
</tr>
<tr>
<td>Release Simultaneously @ Activation Current</td>
<td>+/- 2.5 msec @ 7 Amps for 10 mSec</td>
</tr>
<tr>
<td>Total Mass</td>
<td>1240 grams (2.73 lbm)</td>
</tr>
<tr>
<td>Fly Away Mass (Satellite Interface)</td>
<td>309 grams (0.68 lbm)</td>
</tr>
<tr>
<td>Operational Temperature Range</td>
<td>-150°C to +150°C</td>
</tr>
</tbody>
</table>

Note: 1. Export shock measurement uses HDRM preload of 37.8 kN, NASA standard aluminum test plate, and accelerometers adjacent to the HDRM.
 2. Actuation can be achieved using a wide range of current.
 3. No-fire current for 5 minutes.
 4. Release time is dependent on activation current.
 5. The values for operational temperature range are not the limits of the device.

Model 9103CC1 Hold Down & Release Mechanism (HDRM) Mechanical Interface Drawing

Note: Model 9103CC1 HDRM shows different configurations available with alternate mounting features and connections. Smaller and larger configurations available in accommodate different payloads.

SIGN-BICKFORD AEROSPACE & DEFENSE COMPANY
640 HOPMEADOW STREET, P.O. BOX 429, SIMSBURY, CT 06070, USA www.EBAD.com

EBAD® is a registered trademark of NEA Electronics, Inc. This product and its components are protected under U.S. Patent Numbers 5,431,389, 5,240,432 as well as 10,629,398 and 11,132,501.

Attention: The information and recommendations described in this brochure cannot constitute a warranty of the products or their performance or condition under which the products are used. The recommendations here in are based on the manufacturer's experience, research and design. The end results may vary by an order of magnitude or more between a variety of manufacturers. In addition, the specifications, conditions, tolerances and control which represent our current products. The products described may be subjected to change. Please contact your local EBAD representative or DefendSecure™ for further technical details.

Cleared for Open Publication by the Defense Office of Prepublication and Security Review, Department of Defense 01/27/2022 22-S-0867

www.EBAD.com

Cleared for Open Publication by the Defense Office of Prepublication and Security Review, Department of Defense 01/27/2022 22-S-0867

640 HOPMEADOW STREET, P.O. BOX 429, SIMSBURY, CT 06070, USA www.EBAD.com