NEA® Model 9103CC
Hold Down & Release Mechanism (HDRM)

Model 9103CC Hold Down & Release Mechanism

The NEA® Model 9103CC is an electrically initiated, one-shot mechanism that carries very high mechanical loads until commanded to release. The preload is applied through a release bolt that tightly restrains a cup/cone sheath load interface. The bolt is held in place by two separable spool halves which are in turn held together by tight winding of fuse wires; actuation of either circuit allows release, assuring maximum reliability. When sufficient electrical current is applied, the restraint wire is held in place by redundant electrical fuse wires; actuation of either circuit allows release, assuring maximum reliability. When sufficient electrical current is applied, the restraint wire is held in place by redundant electrical fuse wires; actuation of either circuit allows release, assuring maximum reliability.

Key Features

- Non-explosive hold down & release function
- Very high restraining preload
- Extremely low release shock
- High simultaneity of multiple hold-down points
- Wide operating temperature range
- Can be operated with pyrotechnic initiation circuitry
- Space-rated materials
- Factory refurbishments
- More than 20 years of flight heritage
- Extremely low release shock
- High simultaneity of multiple hold-down points
- Wide operating temperature range
- Can be operated with pyrotechnic initiation circuitry
- Space-rated materials
- Factory refurbishments
- More than 20 years of flight heritage

Applications

Typical applications include retention and release of:
- Antennas, reflectors, solar arrays, and deployable radiators
- Satellites and spacecraft deployment
- Launch vehicle and missile stage and fairing separation
- Mission payload separation

Model 9103CC Technical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preload (as Delivered)</td>
<td>37.8 to 38.2 kN (8,500 to 8,600 lbf)</td>
</tr>
<tr>
<td>Shear Load</td>
<td>55.4 kN (12,450 lb)</td>
</tr>
<tr>
<td>Export Shock (Satellite Interface)</td>
<td>20G @ 2kHz, 180G @ 9kHz</td>
</tr>
<tr>
<td>Export Shock (Dispenser Interface)</td>
<td>30G @ 2kHz, 390G @ 9kHz</td>
</tr>
<tr>
<td>Fuse Wire Resistance</td>
<td>1.2 Ω to 2.0 Ω @ 25°C</td>
</tr>
<tr>
<td>Actuation Current</td>
<td>4 Amps for 25ms</td>
</tr>
<tr>
<td>No-Fire Current</td>
<td>250 mVamps at 10-5 Torr @ 110°C</td>
</tr>
<tr>
<td>Release Time @ Actuation Current</td>
<td><15 mSec @ 7 Amps for 10 mSec</td>
</tr>
<tr>
<td>Release Simultaneity @ Actuation Current</td>
<td>+/- 2.5 mSec @ 7 Amps for 10 mSec</td>
</tr>
<tr>
<td>Total Mass</td>
<td>1380 grams (3.04 lbm)</td>
</tr>
<tr>
<td>Fly Away Mass (Satellite Interface)</td>
<td>450 grams (0.99 lbm)</td>
</tr>
<tr>
<td>Operational Temperature Range</td>
<td>-130°C to +135°C</td>
</tr>
</tbody>
</table>

Notes:

1. Export shock measurement uses HDRM preload of 37.8 kN, NASA standard aluminum test plate, and accelerometers adjacent to the HDRM.
2. Load can be achieved using a wide range of current.
3. No-fire current for 5 minutes.
4. Release time is dependent on actuation current.
5. The values for operational temperature range are not the limits of the device.

Model 9103CC Hold Down & Release Mechanism (HDRM) Mechanical Interface Drawing

DISPENSER INTERFACE

PAYLOAD INTERFACE

Note: Model 9103CC HDRM shown. Different configurations available with alternate mounting features and connectors. Smaller and larger configurations available to accommodate different payloads.

www.EBAD.com

ено the Office of Propulsion and Production Security Review Department of Defense 15570922 25-S-5477